Mathematical Equations
Beautiful Mathematics
Euler's Identity
$$e^{i\pi} + 1 = 0$$Connects five fundamental mathematical constants
Pythagorean Theorem
$$a^2 + b^2 = c^2$$Relationship in a right triangle
Basel Problem
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$Sum of reciprocals of squares
Maxwell's Equations
$$\begin{aligned} \nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t} \end{aligned}$$Fundamental equations of electromagnetism
Quadratic Formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$Solves quadratic equations
Fourier Transform
$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$$Decomposes functions into their frequency components
Navier-Stokes Equations
$$\rho \left( \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}$$Describes fluid motion
Fermat's Last Theorem
$$a^n + b^n = c^n$$No solutions for n > 2
Ramsey's Theorem
$$R(s,t) \leq R(s-1,t) + R(s,t-1)$$Graph coloring